Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression.
نویسندگان
چکیده
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 microM epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.
منابع مشابه
The Role of Clock Genes in Cardiometabolic Disease Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function
Young ME. Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function. J Appl Physiol 107: 1339–1347, 2009. First published July 16, 2009; doi:10.1152/japplphysiol.00473.2009.—Diurnal rhythms in myocardial physiology (e.g., metabolism, contractile function) and pathophyiology (e.g., sudden cardiac death) are well establish and have classically been ascribed to t...
متن کاملAnticipating anticipation: pursuing identification of cardiomyocyte circadian clock function.
Diurnal rhythms in myocardial physiology (e.g., metabolism, contractile function) and pathophyiology (e.g., sudden cardiac death) are well establish and have classically been ascribed to time-of-day-dependent alterations in the neurohumoral milieu. Existence of an intramyocellular circadian clock has recently been exposed. Circadian clocks enable the cell to anticipate environmental stimuli, fa...
متن کاملCircadian rhythms and cardiovascular disease
Diurnal variations in the myocardium have been described at several levels, including gene expression, cellular signaling, metabolism, contractile function, and dysfunction. Regarding myocardial metabolism, carbohydrate, fatty acid, amino acid/protein, and coenzyme metabolism have all been shown to oscillate in the heart in a manner dependent on the time of day. The purpose of this review is to...
متن کاملDiurnal variations in myocardial metabolism.
The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasingly apparent is that the heart exhibits diurnal variations in its intrinsic properties, including...
متن کاملEvidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice.
Circadian dyssynchrony of an organism (at the whole-body level) with its environment, either through light-dark (LD) cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism to contractile function. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 294 2 شماره
صفحات -
تاریخ انتشار 2008